
Chapter 3. DFE - Outline 

General Aspects 

 DFE Tx 

 DFE Rx 
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General diagram of a RR 
 Classical diagram of the superheterodyne receiver 

4/6/2015 Chapter 3. DFE 

2 

RF 

LNA + 
AGC BPF MIX IFA A/D 

FS

G1, NF1, IIP1 G2 , NF2 , IIP2 B G3, NF3, IIP3 PADC ,max



Implementing a SDR 
 Physical layer constraints: 

 Ensuring the quality of the link 

Minimum SNR for a given modulation 

 Avoiding the saturation of the receiver 

 Pmax at the input of the receiver 

 Pmax at the input of the A/D converter 

 Calculated parameters 
 Resulted dynamic range 

 A/D converter resolution 

 Gain on the receive chain 

 Variation range of the AGC 
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Perturbations in a RR 
 Interferences 

 Perturbations that reached the band of interest 

 Noise in the RR 
 Noise captured from the antenna and processed by 

the receiver signal processing chain 

 Quantization noise in the A/D converter  
 Approximation of the analog signal 
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Noise in the RR 
 Noise figure (NF) 

 
 
 

 Noise figure of a chain of blocks 
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Amplifier distortions 
Cause: circuit nonlinearities 
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Intermodulation products 
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Ideal 

2nd order distortions 

3rd order distortions 

Fo = Fi,k
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Intermodulation products (2) 
 

 
 

 

 

4/6/2015 Chapter 3. DFE 

8 

y = f(x) 
F1 F1,2F1, 3F1

F1 F1 2F1 3F1
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Nonlinearities effects 
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Interception point 
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
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1
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1
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+
1
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2
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2

 Interception point for a chain of blocks: 
 

 

 

… … 
… 



Effects on the transmitter 
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 Ideal: 
 

 Real: 
 
 

 Parasite amplitude and phase modulations 
 Artificial growth of signal bandwidth 

 Possible violation of spectral masks 

 The amplifier has to be used far away from the 1dB 
compression point 

 

 

y t( )= Gx t( )

y t( )= G x t( )( )x t( )e jϕ t( )

F

Y F( )



Effects on the receiver 
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AMP 



How is the necessary IIP 
determined? 
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 Example: 

 Useful signal: GSM 

 Perturbation signals: UMTS channels spaced at 2.4 MHz 
 

UMTS Channel 1 UMTS Channel 2 GSM Channel 

2.4MHz 2.4MHz 

B ≈ 5MHz B ≈ 5MHz B ≈ 200kHz



How is the necessary IIP 
determined? (2) 
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 Example: 

 Receiver with gain  

 At 2.4 MHz, the maximum admitted interference level is: 

G[ ]= 20dB
Pi,1  = −23dBm

Reference level = -104dBm 
The maximum admitted 
interference level at the receiver 
output = -110dBm 

Signal level= -101dBm 
3dB 

[SNR]=9dB 

The maximum admitted 
interference level at the 
receiver input= -23dBm [∆A]=87dB 

⇒ IIP3[ ]= Pi,1  +
∆A[ ]
2

= 20.5dBm ⇒ OIP3[ ]= IIP3[ ]+ G[ ]= 40.5dBm



The A/D Converter 
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 Is responsible for: 
 Sampling 

 

 Quantization 

 

 

 

 

 

 The resolution is chosen so that: 

FS ≥ 2Fmax

SNRc[ ]= 1.76dB + 6.02b +10 lg
FS

2Fmax







Number of bits (Converter 
resolution) 

Oversampling gain 

SNRc ≤ SNRo



The A/D Converter (2) 
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 Saturation: 
 Reference voltage: VREF 

 Input resistance: RADC 

 Maximum admitted input power at the ADC input: 

PADC =
VREF

2

RADC



Rx Architectures 
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 The RR has an analog section and a digital section 
 A/D conversion 

 Functions of the analog section 
 Amplification 

 Pre-filtering 

 Mixing from RF to IF or BB 

 Functions of the digital section 
 Mixing to BB (optional) 

 Corrections (closed-loop or open-loop) 
 Carrier frequency 

 Amplification 



Rx Architectures (2) 
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 Fa,IF 
 Zero: Zero IF architecture 
 Different form zero: Digital IF architecture 

 Requires digital mixing to BB (Digital Down Conversion - DDC) 
 

RFU BBU 

Corecții 

Fa,IF 

Analog Digital 



Digital IF Architecture 
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Digital IF Architecture (2) 
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Digital IF Architecture (3) 
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Digital IF Architecture (4) 

4/6/2015 Chapter 3. DFE 

22 

xa t( )

F0

S F( )

Fs

A/D 

cos 2π F0 + FIF( )t( )

xRF t( )

BPF IFA LNA DFE Rx 

BBU 

x n( )
s n( )

2Fs−Fs−2Fs

Fs



Signal sampling 
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 In the previously described diagram, two different 
intermediate frequencies are involved 
 In the analog domain: Fa,IF 

 In the digital domain: Fd,IF 

 The spectrum of the signal is centered on Fa,IF before the 
A/D conversion 

 After the sampling operation, it is possible that the 
spectrum is centered on Fa,IF 

 If subsampling is used 



Signal sampling - example 
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 Signal bandwidth: 4 MHz 
 Intermediate frequency: 70 MHz 

 
 
 
 
 
 

 Maximum frequency: 
 According to Nyquist:  

 A high frequency ADC is needed 

2 144S MF F MHz> =
72MF MHz=

F
0

Xa F( )

−Fa, IF Fa, IF FM
−FM



Signal sampling – example (2) 
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F0

X F( )

−Fa, IF Fa, IF Fs

Fa, IF +
B
2

−Fs

Fs − Fa, IF −
B
2

Fs − Fa, IF

Bt = Fs − 2Fa, IF − B

bt =
Bt

Fs

= 1−
2Fa, IF + B

Fs
bt ? ⇒ Fs ? 2FM>> >>



Signal sampling – example (3) 
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 Numerical example: FS=200MHz 
 Bt=56MHz, bt=0.28 

 Sampling according to Nyquist 
 A high speed ADC is needed 

 In order to separate the usful spectrum from the image one, a 
highly complex digital filter is needed 

 Alternative solution 
 Subsampling 

 The Nyquist theorem doesn’t have to be literally complied with 

 The sampling frequency can be correlated not with the 
maximum frequency of the spectrum, but with the useful 
band of the signal, B 

 In reality, Fs>2B 



Signal subsampling 
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 If we sample the signal with FS=15MHz 
 15MHz << 200MHz 

 The spectrum from 70 MHz will also be found on  
 55, 40, 25, 10, -5, -20, -35, -50, -65, … [MHz] 

 The spectrum from -70 MHz will also be found on  
 -55, -40, -25, -10, 5, 20, 35, 50, 65, … [MHz] 

70 15 [ ]k MHz±

70 15 [ ]k MHz− ±



Signal subsampling (2) 
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 The ADC works on a much lower frequency, so it is 
much cheaper 

 The spectrum is reversed in this case 

, ,5 70d IF a IFF MHz F MHz= ≠ =

1tB MHz=
1

15
t

t
S

Bb
F

= =
F MHz[ ]

X F( )

53 70 108 1215 2018 22−5−7 −3−10−12 −8−20−22 −18



Subsampling – general case 
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 If we sample the signal with FS  
 The spectrum on Fa,IF will be found also on  
 The spectrum on -Fa,IF will be found also on  
 The spectrum can be found on 

               , coming from the image from Fa,IF 

    

                  , coming from the image from -Fa,IF 

,a IF SF kF±

,a IF SF kF− ±

Fa, IF Fs

−Fa, IF Fs

Fd , IF = min Fa, IF Fs
, −Fa, IF Fs

{ }



Subsampling – general case (2) 
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Region Fa,IF 
Reversed 

spectrum? 
Mixing 

frequency 

1 0...Fs/2 No 0 

2 Fs/2...Fs Yes Fs - Fa,IF 

3 Fs...3Fs/2 No Fa,IF  - Fs  

4 3Fs/2...2Fs Yes 2Fs - Fa,IF 

5 2Fs...3Fs/2 No Fa,IF  - 2Fs  

6 5Fs/2...3Fs Yes 3Fs - Fa,IF 

7 3Fs...7Fs/2 No Fa,IF  - 3Fs  

8 7Fs/2...4Fs Yes 4Fs - Fa,IF 



Quadrature demodulation 
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x1 n( )= 1
2

sI n( )+ 1
2

sI n( )cos 2nωd , IF( )− 1
2

sQ n( )sin 2nωd , IF( )

x2 n( )= − 1
2

sQ n( )+ 1
2

sI n( )sin 2nωd , IF( )+ 1
2

sQ n( )cos 2nωd , IF( )

LPF 

LPF 

x n( )= sI n( )cos nωd , IF( )− sQ n( )sin nωd , IF( )

x n( ) x1 n( )

x2 n( )

sI n( )

sQ n( )

ωd , IF = 2π
Fd , IF

Fs

cos nωd , IF( )

sin nωd , IF( )



Quadrature demodulation (2) 
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 Similar to the transmitter case 
 The multiplication is simpler if 

  

 
 It is useful for the sampling to be performed in such a 

way that one of the above relations are obtained 
 Example:  

 
 

 If Fa,IF=70MHz, FS=56MHz => Fd,IF=14MHz 

, 4
S

d IF
FF = , 8

S
d IF

FF =

Fa, IF Fs
=

Fs

4
⇒ Fa, IF − kFs =

Fs

4
Fa, IF = k + 1

4






Fs



Zero IF Architecture 
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 The intermediate IF architecture is based on the 
superheterodyne principle of the analog receivers 
 Problems with: 

 The high complexity 

 The image spectra: F0+2Fa,IF 

 Alternative: 
 The synchrodyne receiver (direct-conversion receiver, 

zero-IF receiver, homodyne receiver) 

 Converts directly to baseband 

 



Zero IF Architecture (2) 
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 The analog oscillator is a quadrature one 
 Two A/D converters are needed  

 

cos 2πF0t( )

LNA 

sin 2πF0t( )

A/D 

Fs

A/D 

Fs DFE Rx 

xa, I t( )

xa,Q t( )

xI n( )

xQ n( )

sI n( )

sQ n( )



Zero IF Problems 
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 Parasite DC component 
 Leakage of the signal from the local oscillator 

 Receiver penetration by a perturbation signal 

 Phase noise 
Oscillator imbalance 
 2nd order distortions 
 Retransmission of the local oscillator 

signal 
 



Parasite DC component 
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LNA 

A/D 

Fs

A/D 

Fs DFE Rx 

xa, I t( )

xa,Q t( )

xI n( )

xQ n( )

sI n( )

sQ n( )

LO 

α cos 2πF0t +ϕ( )

β

Coupling 



Parasite DC component (2) 
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 The presence of a DC component reduces the 
allowed dynamic range 
 In the digital part: |Signal Amplitude|≤1 

 The signal is composed of the useful signal and the DC component 

 

 If β>0 
 

 Limitation of the dynamic range and of the peak power 

| ( ) | 1s nβ + ≤

max| ( ) | 1s n β= −

No DC component           With DC Component 



Phase noise for ZIF receiver 
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 Small number of stages 
 A large amount of amplification will be performed in 

baseband 
 The simplified diagram of the amplification chain: 

 
 
 
 

 The noise produced by the LO can be 
strongly amplified in baseband 
 Important problems with the phase noise (important: 

Flicker noise – 1/f) 

 



Oscillator imbalance 
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2nd order distortions 
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2nd order distortions (2) 
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2nd order distortions (3) 

4/6/2015 Chapter 3. DFE 

42 

 In the ZIF receivers the 2nd order distortions 
are the ones that count 
As a general rule, the even ones 
 IIP2 

 The obtained effect is the presence of a 
parasite DC component in baseband 

 For the superheterodyne receiver the 3rd 
order distortions are the ones that count 
 IIP3 



Retransmission of the LO signal 

4/6/2015 Chapter 3. DFE 

43 



Multiband architectures 
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 Possible using ZIF receivers 
 The signal is composed from several 

spectra, of different bandwidths, centered 
on different frequencies (SDR principle) 

 Different communication standards 

After demodulation 



Multiband architectures (2) 
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Channel separation is performed in DFE Rx 
 A wideband analog section is necessary 

(including antenna)  



DFE Rx Signal Processing Chain 
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 Some blocks can be missing 
 The order is not compulsory 
 The processing of a single channel is considered 

 
 
 

DEMOD – performs signal mixing towards baseband 

SCAL – scales the signal for an optimal processing 

DEC – converts the sampling frequency, in order to use a 
minimum rate, adapted to the channel bandwidth 

COMP – estimates and corrects some receiver parameters 



Signal demodulation 
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 The block is used only in case of the digital 
IF architecture 

 The complexity of the block is similar to the 
MOD block from DFE Tx 
 
 



Level scaling 
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 The power level is adjusted for an optimal 
processing in the baseband section 

 Same principle as for Tx 
 
 



Signal decimation 
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 The signal spectrum before the A/D converter is 
not perfectly limited to the occupied band 
 The analog filtering cannot limit the bandwidth, 

using a medium complexity 
 The signal is oversampled 

 If the sampling theorem is considered as FS>2FM, 
then we talk about subsampling 

 If the band-pass signal sampling theorem is used 
and FS>2B, then a oversampling is used 

 A decimation is necessary 
 
 



Decimation filter 

4/6/2015 Chapter 3. DFE 

50 

 The decimation filter is made of: 
 A complex low-pass filter (2 real filters for I+Q) 
 An elementary decimator 

 
 
 
 

 Goal: limit the signal spectrum 
 After the decimator, aliasing has to be avoided 

 The Nyquist condition has to be observed after the 
decimation 

 
 



Decimation filter (2) 
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Decimation filter (3) 
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 Example: 

 FM=0.75MHz 
 FADC=16MHz 
MDFE=8 

 
 

 The resulted filter can be very complex 
 The decimation has to be done in steps 

 
 

1 0.75 1
16 64tb −

= =



Decimation chain 
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 The complexity of the filters increases along the chain 

 For the first stages, CIC filters can be used 

 
 



CIC Filters 
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 Very fast decimation filters 
 Ideal for FPGA implementation 

 



Compensations 
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Modules based on digital algorithms 
Compensate the imbalances produced by 

the analog circuits (DC, phase, aso.) 
 The imbalances can be: 

Estimated and compensated 
The estimate is fed back to the analog section 
Large deviations are estimated and 

compensated with higher errors 
A reaction path is necessary (D/A conversion) 

Only compensated 
No feedback to the analog domain 



Compensations (2) 
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 DC Offset Compensation 
Compensation: High-Pass Filtering 
 Estimation: measurement during a silent period 

 Automatic Gain Control (AGC) 
Goal: maximize the dynamic range of the signal 
 2 solutions which are not exclusive: 

Analog AGC (compensates the slow fading) 
Digital AGC 

Open-loop: the level is adjusted for further 
processing 

Closed-loop: commands a programmable 
analog attenuator (optimal ADC attack) 

 



Receiver synchronization 
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 Types: 
Carrier synchronization 

Frequency 

Phase 

Clock synchronization 
 Time synchronization 

Most of the algorithms are digital ones 
Open-loop synchronization (only a digital 

correction) 
Closed-loop synchronization (feedback to analog) 

 



Carrier synchronization 
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1 0
1 1( ) cos cos(2 )
2 2

v n nwϕ= + 2 0
1 1( ) sin sin(2 )
2 2

v n nwϕ= +

 Example: Costas Loop 
 Alternative to non-linear schemes 

 Removes the modulating signal through linear transforms 



Costas Loop (2)  
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1( ) cosw n ϕ= 2 ( ) sinw n ϕ=



Costas Loop for BPSK signals 
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Costas Loop for BPSK signals (2) 
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Timing synchronization 
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  Necessary in order to detect the beginning 
of the symbol for the modulating signal 

 Variants: 
 Detection of the transition between the symbols 

 Based on a uniformity of the bit distribution 

 Detection of the middle of the symbol 

 Preamble detection 
 Known sequence, both at transmission and at reception 



Half-symbol integration 
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 For BPSK or QAM signals 
 2 samples/symbol 

 
 
 
 
 

 The sums                      are calculated 
When yk is small, but not zero 

 A time correction proportional with yk is applied 

1k k ky x x −= +



Early-late recovery 
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  3 samples/symbol 
 
 
 

 
 
 

 The middle of the symbol is detected 
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