

General diagram of a RR

Classical diagram of the superheterodyne receiver

Implementing a SDR

- Physical layer constraints:
 - Ensuring the quality of the link
 - Minimum SNR for a given modulation
 - Avoiding the saturation of the receiver
 - P_{max} at the input of the receiver
 - P_{max} at the input of the A/D converter
- Calculated parameters
 - Resulted dynamic range
 - A/D converter resolution
 - Gain on the receive chain
 - Variation range of the AGC

Perturbations in a RR

Interferences

- Perturbations that reached the band of interest
- Noise in the RR
 - Noise captured from the antenna and processed by the receiver signal processing chain
- Quantization noise in the A/D converter
 - Approximation of the analog signal

Noise in the RR Noise figure (NF) $S_i + N_i$ NF, G $S_o + N_o$ $S_o = GS_i$ $N_o = G \cdot NF \cdot N_i$ $\left(\frac{S_o}{N_o}\right) = \frac{1}{NF} \left(\frac{S_i}{N_i}\right)$

Noise figure of a chain of blocks

Nonlinearities effects

Interception point

Interception point for a chain of blocks:

$$OIP_{3,l}, G_{l} \qquad OIP_{3,2}, G_{2} \qquad \Box \qquad OIP_{3,N}, G_{N}$$

$$OIP_{3,e} = \frac{1}{\frac{1}{OIP_{3,1}G_{2}G_{3}\dots G_{N}} + \frac{1}{OIP_{3,2}G_{3}\dots G_{N}} + \dots + \frac{1}{OIP_{3,N-1}G_{N}} + \frac{1}{OIP_{3,N}}}{\prod \qquad [OIP_{3}] = [P_{o,1}] + \frac{[\Delta A]}{2}}{\left[IIP_{3}\right] = [P_{i,1}] + \frac{[\Delta A]}{2}}$$

- Parasite amplitude and phase modulations
- Artificial growth of signal bandwidth
 - Possible violation of spectral masks
- The amplifier has to be used far away from the 1dB compression point

F

How is the necessary IIP determined?

- Example:
 - Useful signal: GSM
 - Perturbation signals: UMTS channels spaced at 2.4 MHz

How is the necessary IIP determined? (2)

Example:

• Receiver with gain [G] = 20 dB

• At 2.4 MHz, the maximum admitted interference level is: $[P_{i,1}] = -23 dBm$

The maximum admitted interference level at the receiver input= -23dBm

 $m \Rightarrow [OIP_3] = [IIP_3] + [G] = 40.5 dBm$

Signal level= -101dBm Reference level = -104dBm The maximum admitted interference level at the receiver output = -110dBm 4/6/2015

$$[\Delta A] = 87dB$$

$$\Rightarrow [IIP_3] = [P_{i,1}] + \frac{[\Delta A]}{2} = 20.5dBt$$

$$3dB$$

$$[SNR] = 9dB$$

Chapter 3. DFE

The A/D Converter

Is responsible for:

- Sampling $F_{s} \geq 2F_{\max}$
- Quantization $\begin{bmatrix}SNR_c\end{bmatrix} = 1.76dB + 6.02b + 101g\left(\frac{F_s}{2F_{max}}\right)$ Number of bits (Converter resolution) Oversampling gain

• The resolution is chosen so that: $SNR_c \leq SNR_o$

The A/D Converter (2)

Saturation:

- Reference voltage: V_{REF}
- Input resistance: R_{ADC}
- Maximum admitted input power at the ADC input:

$$P_{ADC} = \frac{V_{REF}^2}{R_{ADC}}$$

Rx Architectures

- The RR has an analog section and a digital section
 - A/D conversion

- Functions of the analog section
 - Amplification
 - Pre-filtering
 - Mixing from RF to IF or BB
 - Functions of the digital section
 - Mixing to BB (optional)
 - Corrections (closed-loop or open-loop)
 - Carrier frequency
 - Amplification

Digital IF Architecture

Signal sampling

- In the previously described diagram, two different intermediate frequencies are involved
 - In the analog domain: $F_{a,IF}$
 - In the digital domain: $F_{d,IF}$
- The spectrum of the signal is centered on $F_{a,IF}$ before the A/D conversion
 - After the sampling operation, it is possible that the spectrum is centered on $F_{a,IF}$
 - If subsampling is used

Signal sampling – example (2)

4/6/2015

Signal sampling – example (3)

- Numerical example: F_s =200MHz
 - $B_t = 56 \text{MHz}, b_t = 0.28$

- Sampling according to Nyquist
 - A high speed ADC is needed
 - In order to separate the usful spectrum from the image one, a highly complex digital filter is needed
 - Alternative solution
 - Subsampling
 - The Nyquist theorem doesn't have to be literally complied with
 - The sampling frequency can be correlated not with the maximum frequency of the spectrum, but with the useful band of the signal, B
 - In reality, $F_s > 2B$

Signal subsampling

- If we sample the signal with F_s =15MHz
 - ▶ 15MHz << 200MHz

- The spectrum from 70 MHz will also be found on $70\pm15k[MHz]$
 - ▶ 55, 40, 25, 10, -5, -20, -35, -50, -65, ... [MHz]
- The spectrum from -70 MHz will also be found on $-70\pm15k[MHz]$
 - -55, -40, -25, -10, 5, 20, 35, 50, 65, ... [MHz]

- much cheaper
- The spectrum is reversed in this case

Chapter 3. DFE

Subsampling – general case

- If we sample the signal with F_s
- The spectrum on $F_{a,IF}$ will be found also on $F_{a,IF} \pm kF_S$
- The spectrum on $-F_{a,IF}$ will be found also on $-F_{a,IF} \pm kF_S$
- The spectrum can be found on
 - $\langle F_{a,IF} \rangle_{F_{a,IF}}$, coming from the image from $F_{a,IF}$
 - $\left\langle -F_{a,IF} \right\rangle_{F_s}$, coming from the image from -F_{a,IF}

$$F_{d,IF} = \min\left\{\left\{F_{a,IF}\right\}_{F_s}, \left\langle-F_{a,IF}\right\rangle_{F_s}\right\}$$

Subsampling – general case (2)

Region	$oldsymbol{F}_{a,IF}$	Reversed spectrum?	Mixing frequency
1	$0F_{s}/2$	No	0
2	$F_s/2F_s$	Yes	Fs - Fa,IF
3	$F_{s}3F_{s}/2$	No	Fa,IF - Fs
4	$3F_{s}/22F_{s}$	Yes	2Fs - Fa,IF
5	$2F_{s}3F_{s}/2$	No	Fa,IF - 2Fs
6	$5F_{s}/23F_{s}$	Yes	$3F_s$ - $F_{a,IF}$
7	$3F_{s}7F_{s}/2$	No	Fa,IF - 3Fs
8	$7F_s/24F_s$	Yes	4Fs - Fa,IF

30

4/6/2015

Quadrature demodulation (2)

Similar to the transmitter case

• The multiplication is simpler if

$$F_{d,IF} = \frac{F_S}{4} \qquad \qquad F_{d,IF} = \frac{F_S}{8}$$

It is useful for the sampling to be performed in such a way that one of the above relations are obtained
 Example:

$$\left\langle F_{a,IF}\right\rangle_{F_s} = \frac{F_s}{4} \Longrightarrow F_{a,IF} - kF_s = \frac{F_s}{4} \qquad \qquad F_{a,IF} = \left(k + \frac{1}{4}\right)F_s$$

• If $F_{a,IF} = 70$ MHz, $F_S = 56$ MHz => $F_{d,IF} = 14$ MHz

Chapter 3. DFE

33

Zero IF Architecture

- The intermediate IF architecture is based on the superheterodyne principle of the analog receivers
 - Problems with:
 - The high complexity
 - The image spectra: $F_0 + 2F_{a,IF}$
 - Alternative:
 - The synchrodyne receiver (direct-conversion receiver, zero-IF receiver, homodyne receiver)
 - Converts directly to baseband

Two A/D converters are needed

35

Zero IF Problems

Parasite DC component

- Leakage of the signal from the local oscillator
- Receiver penetration by a perturbation signal
- Phase noise
- Oscillator imbalance
- 2nd order distortions
- Retransmission of the local oscillator signal

Parasite DC component

Parasite DC component (2)

- The presence of a DC component reduces the allowed dynamic range
 - In the digital part: |Signal Amplitude | ≤ 1
 - The signal is composed of the useful signal and the DC component $|\beta + s(n)| \le 1$

If β>0

$$|s(n)|_{\max} = 1 - \beta$$

Limitation of the dynamic range and of the peak power

Phase noise for ZIF receiver

- Small number of stages
 - A large amount of amplification will be performed in baseband
 - The simplified diagram of the amplification chain:

- The noise produced by the LO can be strongly amplified in baseband
 - Important problems with the phase noise (important: Flicker noise – 1/f)

2nd order distortions (3)

- In the ZIF receivers the 2nd order distortions are the ones that count
 - As a general rule, the even ones
 - **II**P2

- The obtained effect is the presence of a parasite DC component in baseband
- For the superheterodyne receiver the 3rd order distortions are the ones that count

Multiband architectures

- Possible using ZIF receivers
- The signal is composed from several spectra, of different bandwidths, centered on different frequencies (SDR principle)

Different communication standards

Multiband architectures (2)

Channel separation is performed in DFE Rx

 A wideband analog section is necessary (including antenna)

DFE Rx Signal Processing Chain

- Some blocks can be missing
- The order is not compulsory
- The processing of a single channel is considered

$$\rightarrow$$
 demod \rightarrow scal \rightarrow dec \rightarrow comp \rightarrow

DEMOD – performs signal mixing towards baseband

SCAL – scales the signal for an optimal processing

DEC – converts the sampling frequency, in order to use a minimum rate, adapted to the channel bandwidth

COMP – estimates and corrects some receiver parameters

47

Signal demodulation

$$\rightarrow$$
 demod \rightarrow scal \rightarrow dec \rightarrow comp \rightarrow

- The block is used only in case of the digital IF architecture
- The complexity of the block is similar to the MOD block from DFE Tx

Level scaling

The power level is adjusted for an optimal processing in the baseband section

Same principle as for Tx

The signal spectrum before the A/D converter is not perfectly limited to the occupied band

- The analog filtering cannot limit the bandwidth, using a medium complexity
- The signal is oversampled
 - If the sampling theorem is considered as $F_S > 2F_{M'}$, then we talk about subsampling
 - If the band-pass signal sampling theorem is used and $F_s > 2B$, then a oversampling is used
- A decimation is necessary

Decimation filter

The decimation filter is made of:

- A complex low-pass filter (2 real filters for I+Q)
- An elementary decimator

- Goal: limit the signal spectrum
 - After the decimator, aliasing has to be avoided
 - The Nyquist condition has to be observed after the decimation

Decimation filter (3)

Example:

52

- ► F_M=0.75MHz
- ► F_{ADC}=16MHz
- M_{DFE}=8

$$b_t = \frac{1 - 0.75}{16} = \frac{1}{64}$$

The resulted filter can be very complex
The decimation has to be done in steps

Decimation chain

- The complexity of the filters increases along the chain
- For the first stages, CIC filters can be used

y(n)

y(n)

 $\downarrow M$

 $1 - z^{-D}$

w(n)

 $1-z^{-MD}$

 $\downarrow M$

Compensations

- Modules based on digital algorithms
- Compensate the imbalances produced by the analog circuits (DC, phase, aso.)
- The imbalances can be:
 - Estimated and compensated
 - The estimate is fed back to the analog section
 - Large deviations are estimated and compensated with higher errors
 - A reaction path is necessary (D/A conversion)
 - Only compensated
 - No feedback to the analog domain

Compensations (2)

DC Offset Compensation

- Compensation: High-Pass Filtering
- Estimation: measurement during a silent period
- Automatic Gain Control (AGC)
 - Goal: maximize the dynamic range of the signal
 - 2 solutions which are not exclusive:
 - Analog AGC (compensates the slow fading)

Digital AGC

- Open-loop: the level is adjusted for further processing
- Closed-loop: commands a programmable analog attenuator (optimal ADC attack)

Receiver synchronization

Types:

57

- Carrier synchronization
 - Frequency
 - Phase
- Clock synchronization
- Time synchronization

Most of the algorithms are digital ones

- Open-loop synchronization (only a digital correction)
- Closed-loop synchronization (feedback to analog)

Carrier synchronization 58 Example: Costas Loop Alternative to non-linear schemes Removes the modulating signal through linear transforms $v_1(n)$ $\cos(n\omega_0 + \varphi)$ x(n)NCO $-\sin(n\omega_0+\varphi)$ $v_2(n)$ $v_1(n) = \frac{1}{2}\cos\varphi + \frac{1}{2}\cos(2nw_0)$ $v_2(n) = \frac{1}{2}\sin\varphi + \frac{1}{2}\sin(2nw_0)$ Chapter 3. DFE 4/6/2015

Costas Loop for BPSK signals

60

Chapter 3. DFE

4/6/2015

Costas Loop for BPSK signals (2)

61

Chapter 3. DFE

4/6/2015

Timing synchronization

- Necessary in order to detect the beginning of the symbol for the modulating signal
- Variants:

- Detection of the transition between the symbols
 - Based on a uniformity of the bit distribution
- Detection of the middle of the symbol
- Preamble detection
 - Known sequence, both at transmission and at reception

