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Chapter 3. DFE - Outline 

General Aspects 

 DFE Tx 

 DFE Rx 
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General Aspects - Purpose 
 Several Tx/Rx signal processing operations are 

performed at this stage 
 These operations are not related to a particular 

standard and depend on the equipment 
manufacturer 

 Examples: 
 Filtering 

 Sampling frequency conversion 

 Amplifier linearization 

 Signal level conversion 

 DC offset compensation 

 Carrier recovery 

 Automatic gain control 
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General Aspects - Implementation 

 Can be implemented in a dedicated chipset 

 Analog devices (AD9857, AD9777) 

 Texas Instruments 

 Can be implemented in the baseband processing DSP 

 Can be implemented in a dedicated processor, 

together with the RF part 
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Chapter 2. DFE - Outline 

General Aspects 

 DFE Tx 

 DFE Rx 
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General diagram – DFE Tx 

 

 

 INT – Interpolation block 

 Increaseas the sampling frequency 

(Oversampling) 
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General diagram – DFE Tx 

 

 

 COMP – Compensation block 

Compensates in frequency domain the 

possible imperfections from the DFE 
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General diagram – DFE Tx 

 

 

 SCAL – Scaling block 

 Adjusts the power level of the output signal 
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General diagram – DFE Tx 

 

 

 LIN – Amplifier Characteristic Linearization 

 Decreases the peak power of the signal and 

compensates the non-linearities that the 

power amplifier will introduce 
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General diagram – DFE Tx 

 

 

 MOD – Digital mixing block 

 Performs a frequency translation of the 

obtained signal 
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General diagram – DFE Tx 

 

 Many of the blocks are optional, and the 

corresponding implemented functions are varied 

and don’t comply with a particular standard 
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DFE Tx - Architectures 

 Direct conversion architecture 

 The BB output is double: I/Q 

 Better suited for integration 

 Digital intermediate frequency architecture 

 The BB output is simple 

 The modulation on first IF is made in the digital 

domain 
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Digital IF architecture 
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Digital IF architecture (2) 
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Digital IF architecture (3) 
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Digital IF architecture (4) 

3/25/2015 Chapter 3. DFE 

16 



Digital IF architecture (4) 
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Transition band 
Bt   = (Fs  − FIF  − FM  ) − (FIF  + FM  ) 

Bt   = Fs  − 2FIF  − 2FM 



Comments regarding the 
mixing process 
 After the mixing, Fs  has to comply with the 

Nyquist condition for the digital mixed signal:  

     Fs  ≥ 2(FIF  + FM  ) 
 Usually, for ease:  

 It is not compulsory 

 

 The signal has to be oversampled 

 The pulse-shaping filter will be used 
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Comments regarding the 
mixing process (2) 
 The transition band of the filter that is responsible 

for suppressing the image components is   
     
 

 It cannot be chosen 

 An oversampling with at least 2 has to be done 

 The oversampling factor L can be defined as 

 

 If 
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Comments regarding the 
mixing process (3) 
 The higher the oversampling in the digital 

domain, the higher the transition band of the 
analog filter  
 The analog filtering is easier to be done   

 The oversampling can be achieved 
 In the pulse-shaping filter 

 Seldom, here an interpolation order as small as 
possible is usually chosen 

 In the DFE 

 The interpolation order can be in the range 32…64 
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Digital IF architecture (5) 

3/25/2015 Chapter 3. DFE 

21 



3/25/2015 Chapter 3. DFE 

22 Digital IF architecture (6) 
 



Direct conversion architecture 
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Direct conversion architecture (2) 
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Comments regarding the filtering 
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 The filter has the transition band 
 

 
 The oversampling is needed in this case too   

 The filtering is not ideal and is usually not performed in 
the D/A converter 
 An analog filter is needed after the D/A converter in order to 

remove the unwanted components from the spectrum 

( ) 2t s M M s MB F F F F F= − − = −

2 ( 1)t MB F L= −
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Direct conversion architecture (3) 
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Direct conversion architecture (4) 
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Direct conversion architecture (5) 
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Oversampling 

 In the pulse-shape filtering stage, an 
oversampling with Nsym    

 The typical values of roll-off factor for RC filters 
are:  
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Oversampling (2) 

 Example: 
 
 

 In case of the direct conversion architecture: 
 
 

 The analog filter can be easily implemented 
 For Nsym=4 it results Bt=6MHz 
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Oversampling (3) 

 The RC interpolation filter should be 
implemented in an efficient way 

 Fact: we cannot use only the RC filter for 
performing the interpolation 

 The RC filter implements a minimum necessary 
interpolation in order to avoid aliasing (ex. 
Nsym=4) 

 The interpolation has to be continued in the DFE: 
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CIC Filters 

 CIC = Cascaded Integrator Comb 
 Very fast interpolation filters 
 Ideal for FPGA implementation   
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CIC Filters (2) 
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CIC Filters (3) 

 The necessary operations are very simple 
 For each new entry, at most two additions are being 

made 

 The operations which depend on the interpolation 
order are: 
 Storing D samples using circular addressing 

 Counting M samples for updating the computing of y(n) 

 Both of the above operations are programmable 
 The same physical entity can be programmed to 

implement different interpolation orders 
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CIC Filter Frequency Response 
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 Example: M=2, D=8 or D=4 



CIC Filter Frequency Response (2) 

3/25/2015 Chapter 3. DFE 

36 

 Significant side lobes 
 The images can be insufficient attenuated 
 D has to take high values 

 Steep fall around the maximum  
 Significant attenuation in the passband 
 The passband has to be narrow, in order for 

the characteristic to be as flat as possible 
 Passband distortions 
 D has to take small values 

 



CIC Filter Frequency Response (3) 
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 Example: M=2, D=4 

 

 

 

 

 

 Example: M=2, D=2 
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CIC Filter Frequency Response (4) 
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 The upper limit of the D parameter is the 
bandwidth occupied by the system 
 

 
 

 K is a safety factor, typically of value 1 or 2 
 The highest the K value, a lower part of the 

passband is affected by the CIC filter 
characteristic 

 For rejecting the images, several stages can be 
used 
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CIC Filter Frequency Response (5) 
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 Example: MD=16 
 



Frequency compensation 

 

 Frequency compensation of the CIC filter 
characteristic 

 Frequency compensation of the D/A converter 
characteristic 

 The COMP block can be located in front of the 
INT block (in order to work at a lower sampling 
frequency)  
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CIC Filter Inversion 

 Is done using a filter whose characteristic in the 
passband compensates the characteristic of the 
CIC filter   
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Power level scaling 

 

 Usage of the whole dynamic range of the DAC 
for an efficient operation and for minimizing the 
quantization noise 

 The maximum desired peak power shouldn’t 
saturate the DAC. 
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Power level scaling (2) 

 

 
 
 

 Power gain can be configured 
 The variation resolution can be adjusted 

depending on the number of bits used for 
representing G. 
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Power level scaling (3) 

 Simple cases: 
 Amplification/attenuation that represents a left/right shift 

with a certain number of bits 

 The power gain can be adjusted in 6dB steps 

 Terms that are used for defining signal power: 
 Peak power 

 Average power 

 Both depend on the signal constellation 
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PAPR ratio 
 PAPR: Peak to Average Power Ratio 

 
 Depends on the used digital modulation 
 Adds a constraint on the power gain G 
 The gain should be chosen so that the peak 

power doesn’t saturate the DAC 
 
 

 Example: Px=0.23W, [PAPR]max=8dB 
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Power Amplifier Linearization 

 

 

 

 

 Extending the area where the power amplifier 
characteristic is linear 
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Digital Mixing 

 

 Shift the digital spectrum of the signal 
 

 Appears only in case of the digital IF 
architecture 

 The key part is to generate the function 
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